首页> 外文OA文献 >A Statistical Approach to Set Classification by Feature Selection with Applications to Classification of Histopathology Images
【2h】

A Statistical Approach to Set Classification by Feature Selection with Applications to Classification of Histopathology Images

机译:基于特征选择的集合分类统计方法   组织病理学图像分类的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Set classification problems arise when classification tasks are based on setsof observations as opposed to individual observations. In set classification, aclassification rule is trained with $N$ sets of observations, where each set islabeled with class information, and the prediction of a class label isperformed also with a set of observations. Data sets for set classificationappear, for example, in diagnostics of disease based on multiple cell nucleusimages from a single tissue. Relevant statistical models for set classificationare introduced, which motivate a set classification framework based oncontext-free feature extraction. By understanding a set of observations as anempirical distribution, we employ a data-driven method to choose those featureswhich contain information on location and major variation. In particular, themethod of principal component analysis is used to extract the features of majorvariation. Multidimensional scaling is used to represent features asvector-valued points on which conventional classifiers can be applied. Theproposed set classification approaches achieve better classification resultsthan competing methods in a number of simulated data examples. The benefits ofour method are demonstrated in an analysis of histopathology images of cellnuclei related to liver cancer.
机译:当分类任务基于观察值集而不是单个观察值时,会出现集合分类问题。在集合分类中,使用$ N $个观测值集训练分类规则,其中每个集合都标记有类别信息,并且还使用一组观测值来执行类别标签的预测。用于集合分类的数据集例如出现在基于来自单个组织的多个细胞核图像的疾病诊断中。介绍了用于分类的相关统计模型,该模型激励了基于无上下文特征提取的分类框架。通过将一组观察结果理解为经验分布,我们采用数据驱动的方法来选择那些包含有关位置和主要变化信息的特征。尤其是,使用主成分分析方法来提取主要变化的特征。多维缩放用于将要素表示为可以在其上应用常规分类器的矢量值点。在许多模拟数据示例中,提出的集合分类方法都比竞争方法获得更好的分类结果。我们的方法的好处在与肝癌相关的细胞核的组织病理学图像分析中得到了证明。

著录项

  • 作者

    Jung, Sungkyu; Qiao, Xingye;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号